

Multi-phase asymmetric fluid flow and inclusion entrapment in the slab mold

Go-Gi Lee

(Visiting Scholar from POSTECH, South Korea)

Brian G. Thomas

(Wilkins Professor of Mechanical Engineering)

Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

Acknowledgements

- Prof. Seon-Hyo Kim
- POSCO especially Drs Joo Choi, Ho-Jung Shin
- Continuous Casting Consortium at UIUC
- Dr Joydeep Sengupta
- Former Graduate Students Quan Yuan, Sana Mahmood

Outline

- Background: origin of defects
- Water model experiments:
 - Measure argon bubble size entering nozzle
 - Model bubble size distribution in mold
- Computational model
 - Nozzle and Mold
 - Effect of gas flow rate and asymmetric flow

Metals Processing Simulation Lab

- Plant measurements
 - Nail board

University of Illinois at Urbana-Champaign

tinuous Casting - Internal inclusions capture locations

Mechanism of defect formation from particle entrapment

- 1. Gas injection and bubble formation in nozzle
- 2. Transport of particles (bubbles & inclusions) by flow
- 3. Inclusions attached to bubbles during transport
- 4. Bubbles and inclusions entrapped in strand
 - Near meniscus (by hooks)
 - At solidification front (stagnation)
- 5. Entrapped bubble elongates during rolling and expands during annealing (re-heat) to create blister
- 5. Entrapped inclusions stretch during rolling to create slivers

3

Go-Gi Lee

Background

1. Gas injection and bubble formation in nozzle

3. Inclusion attached to bubbles during transport

Background (4 videos) 4. Bubbles and inclusions entrapped in strand

Pitting after 2mm scarfing

ОМ

Bubble trapped near meniscus (hook)

Water experiment conditions - Water flow rate: 36.8 l/min - Gas flow rate: 9 l/min

Bubble motion in meniscus region (water model)

Capture at solidification frontBoth captured(only if stagnant)Both pushed

A. Chang & J. Dantzig, UIUC, 2006

University of Illinois at Urbana-Champaign

Background

Outlet port

Side view

- Active sites in downward flow are about 2 times those in stagnant flow
- Gas flow rate per site of high permeability is slightly higher than that of low permeability in downward-flowing flow at the same total gas flow rate

$$=\frac{1}{A_{S}^{*}(cm^{2})\times N_{U}(\#/cm^{2})}$$

*) $A_s = 353.4$ cm², see appendix 1

Q _T (Total gas flow rate-cold, l/min)	Water Model				Steel Caster			
	0.1	0.2	0.3	0.4	5	7	9	11
β (Gas volume expansion coefficient**)	1			4				
NT (Total active sites on inner wall area, #)	24	34	40	44	4578	4853	5058	5223
Estimated mean gas flow rate per site (hot, ml/s)	0.069	0.098	0.125	0.151	0.073	0.096	0.119	0.140

0.25

Similarity of mean gas flow rate per site between two systems

 It makes the result of water model is meaningful University of Illinois at Urbana-Champaign Metals Processing Simulation Lab

0.00

0.00

0.05

0.10

Estimated mean gas flow rate per site in steel caster (ml/s, hot)

0.15

The mean bubble size increases with increasing gas flow rate and decreasing liquid velocity

0.6

 $Gas injection volume \ fraction = \frac{10 \ tal \ gas \ flow \ rate}{(Total \ gas \ flow \ rate + \ Liquid \ flow \ rate)} *100$

Gas injection volume fraction (%)

0.8

1.0

Total gas flow rate

1.2

1.4

0.6

0.5 0.0

0.2

Appendix 1. Surface Area Ratio

Effective length of UTN considered distribution of Ar gas velocity 14mm 17mm 0.25 75mm Distance from bottom to top of the nozzle (m). 0.20 0.15 150mm VS 44mm L_{eff} L_{UTN} 0.10 0.05 Rectangular 0.00 Cylinder-like 0.03 0.01 0.(0.04 0.02 refractory fixed refractory in Velocity (m/s) in water model actual plant Distribution of Ar gas velocity Surface area (A_w) Surface area (A_s) $= 6.2 \text{cm}^2$ B. G. Thomas & Z. Hashisho, CCC Annual Report, 2005 = 353.4 cm² 23 University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Go-Gi Lee

University of Illinois at Urbana-Champaign

Comparison of asymmetric flow due to slide gate (single phase simulation)

Cross-sections of mold

Simulation conditions

sting

asting Consortium

- Slab thickness: 230mm
- Slab width: 1570mm
- Casting speed: 1.46m/min
- Ar gas flow rate: 9*SLPM*
- No electromagnetic effect

•

Particle distribution with depth from slab surface using ultra-sonic analysis

- defects in both straight and curved regions \rightarrow not controlled by surface hooks or by
- Higher Ar gas flow rate - More defects on IR \rightarrow caused by asymmetric flow between wide faces

Conclusions (modeling results)

- Gas exits upper outside-radius corner of nozzle port (owing to asymmetric flow inside nozzle
- Gas rises up outside radius of mold, causing high gas concentration on top surface (OR)
- Gas rising causes rising flow, which washes particles away from OR (particle entrapment not possible with upward flow, because gas buoyancy assists cross velocity)
- Gas flow across thickness of mold surface carries flow down inside radius (if gas flow rate is high enough)
- Downward flow makes inclusion / bubble entrapment possible (if downward flow velocity matches particle buoyancy)
- Result: increased entrapment on inside radius of wide face at higher gas flow rates, and different bubble size distributions in different locations (according to downward velocity)

